Rate Limits & Best Practices

Guidelines for responsible API usage and optimal performance.
Rate Limits
Recommended Limits:
  • 10-20 requests per minute per IP address
  • No more than 100 requests per hour per IP
  • Use exponential backoff when hitting limits

This API proxies requests to Roblox's official APIs, which have their own rate limits. To ensure the service remains available for everyone, please follow these guidelines:

Understanding Rate Limits

Rate limits are in place to:

  • Prevent abuse and ensure fair usage
  • Protect Roblox's servers from overload
  • Maintain service stability for all users

Rate Limit Responses

When you exceed rate limits, you may receive:

  • HTTP 429 Too Many Requests – Temporary rate limit exceeded
  • HTTP 503 Service Unavailable – Service temporarily overloaded
  • Error response with error field describing the issue
⚠️ Important: Excessive requests may result in temporary IP bans. Always implement proper rate limiting and error handling in your applications.
Caching Strategies

Caching responses can significantly reduce API calls and improve performance. Here are recommended caching strategies:

What to Cache

  • User profiles – Cache for 5-15 minutes (usernames/display names change infrequently)
  • Group memberships – Cache for 1-5 minutes (memberships change occasionally)
  • Avatar URLs – Cache for 10-30 minutes (avatars change less frequently)
  • Presence data – Cache for 30-60 seconds (presence changes frequently)
  • Friend/follower counts – Cache for 2-5 minutes

Cache Implementation Example

Python example with caching:

import requests
import time
from functools import lru_cache

# Simple in-memory cache with TTL
cache = {}
CACHE_TTL = 300  # 5 minutes

def fetch_user_info(username, use_cache=True):
    # Check cache first
    if use_cache and username in cache:
        cached_data, timestamp = cache[username]
        if time.time() - timestamp < CACHE_TTL:
            return cached_data
    
    # Fetch from API
    url = "https://rbx-group-fetcher.dimasuperotovorot3000.workers.dev/"
    response = requests.post(url, json={"username": username})
    data = response.json()
    
    # Store in cache
    if response.status_code == 200:
        cache[username] = (data, time.time())
    
    return data

JavaScript example with localStorage:

const CACHE_TTL = 5 * 60 * 1000; // 5 minutes

async function fetchUserInfo(username, useCache = true) {
    const cacheKey = `user_${username}`;
    
    // Check cache
    if (useCache) {
        const cached = localStorage.getItem(cacheKey);
        if (cached) {
            const { data, timestamp } = JSON.parse(cached);
            if (Date.now() - timestamp < CACHE_TTL) {
                return data;
            }
        }
    }
    
    // Fetch from API
    const response = await fetch('https://rbx-group-fetcher.dimasuperotovorot3000.workers.dev/', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ username })
    });
    
    const data = await response.json();
    
    // Store in cache
    if (response.ok) {
        localStorage.setItem(cacheKey, JSON.stringify({
            data,
            timestamp: Date.now()
        }));
    }
    
    return data;
}
💡 Tip: Use cache keys that include the username/userId and any relevant parameters (like groupId) to ensure cache accuracy.
Error Handling & Retry Logic

Proper error handling ensures your application gracefully handles failures and rate limits.

Exponential Backoff

When you receive a rate limit error (429), implement exponential backoff:

import time
import random

def fetch_with_retry(username, max_retries=3):
    url = "https://rbx-group-fetcher.dimasuperotovorot3000.workers.dev/"
    
    for attempt in range(max_retries):
        try:
            response = requests.post(url, json={"username": username})
            
            if response.status_code == 429:
                # Rate limited - exponential backoff
                wait_time = (2 ** attempt) + random.uniform(0, 1)
                print(f"Rate limited. Waiting {wait_time:.2f}s...")
                time.sleep(wait_time)
                continue
            
            if response.status_code == 200:
                return response.json()
            
            # Other errors
            response.raise_for_status()
            
        except requests.exceptions.RequestException as e:
            if attempt == max_retries - 1:
                raise
            wait_time = (2 ** attempt) + random.uniform(0, 1)
            time.sleep(wait_time)
    
    raise Exception("Max retries exceeded")

Error Response Handling

Always check for errors in the response:

async function fetchUserInfo(username) {
    const response = await fetch('https://rbx-group-fetcher.dimasuperotovorot3000.workers.dev/', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ username })
    });
    
    const data = await response.json();
    
    if (!response.ok) {
        // Handle different error types
        if (response.status === 400) {
            throw new Error(`Bad Request: ${data.error || 'Invalid parameters'}`);
        } else if (response.status === 404) {
            throw new Error(`User not found: ${username}`);
        } else if (response.status === 429) {
            throw new Error('Rate limit exceeded. Please wait before retrying.');
        } else {
            throw new Error(`API Error: ${data.error || 'Unknown error'}`);
        }
    }
    
    return data;
}

Best Practices

  • Always implement timeout handling (e.g., 10-30 seconds)
  • Log errors for debugging but don't expose sensitive information
  • Use retry logic only for transient errors (429, 503, network failures)
  • Don't retry on client errors (400, 404) – these won't succeed on retry
  • Implement circuit breakers for repeated failures
  • Monitor your request patterns and adjust rate limits accordingly
❌ Don't:
  • Make requests in tight loops without delays
  • Ignore rate limit errors and continue making requests
  • Cache error responses
  • Make requests on every page load without checking cache first
✅ Do:
  • Implement request queuing/throttling
  • Cache successful responses appropriately
  • Use exponential backoff for retries
  • Monitor and log your API usage
  • Respect rate limits and be a good API citizen